advertisement
Science News
from research organizations

Trailblazing findings on the properties of daguerreotypes

Date:
June 10, 2019
Source:
University of New Mexico
Summary:
Researchers have announced the groundbreaking findings of a two-year study of the plasmonic properties of daguerreotypes.
Share:
FULL STORY

The Metropolitan Museum of Art (The Met) and The University of New Mexico (UNM) today announced the groundbreaking findings of a two-year study of the plasmonic properties of daguerreotypes.

Using atomic force microscopy and scanning electron microscopy, together with numerical calculations, the team of scientists from The Met and UNM, in collaboration with Century Darkroom, Toronto was able to determine how the light scattered by the metallic nanoparticles on the surface of a daguerreotype determines the characteristics of its image, such as shade and color.

The pioneering research -- recently published in the journal PNAS -- not only provides an in-depth understanding of these 19th century photographs that are crucial for their preservation, but also introduces new possible approaches for color printing where nanostructures are directly manufactured by light.

"We are thrilled by these findings that help us better understand the fascinating properties of daguerreotypes and shed light on how to continue to advance the preservation of these incredible works of art," said Silvia A. Centeno, Research Scientist in the Department of Scientific Research at The Metropolitan Museum of Art.

"The team at the University of New Mexico embarked on this study to achieve a better understanding of the mechanisms that give rise to the optical response of daguerreotypes and to contribute to the development of protocols for preserving these fragile artifacts," said Alejandro Manjavacas from the Department of Physics and Astronomy at The University of New Mexico. "Thanks to the fantastic teamwork between scientists from both the cultural and scientific communities we were able to accomplish what we set out to do."

Unlike other types of photographs, daguerreotypes rely on light scattering by metallic nanoparticles to create images that project off a reflective silver substrate. These early photographs can be recognized as the first examples of plasmonic color printing, an emerging research field that exploits the interactions between light and metallic nanostructures to produce vivid colors.

The image tones of a daguerreotype are dynamic and unique in that they can change with the viewing angle and, for the first time, this effect is explained by the authors, who found that the morphology and size of nanoparticles determines how these will scatter thus creating the visual outcome of the daguerreotype. Studies of the image properties of daguerreotypes serve to inform the development of preservation protocols, as well as novel approaches to future color printing technologies inspired by past ones.

Story Source:

Materials provided by University of New Mexico. Original written by Steve Carr & Micol Spinazzi. Note: Content may be edited for style and length.


Journal Reference:

  1. Andrea E. Schlather, Paul Gieri, Mike Robinson, Silvia A. Centeno, Alejandro Manjavacas. Nineteenth-century nanotechnology: The plasmonic properties of daguerreotypes. Proceedings of the National Academy of Sciences, 2019; 201904331 DOI: 10.1073/pnas.1904331116

Cite This Page:

University of New Mexico. "Trailblazing findings on the properties of daguerreotypes." ScienceDaily. ScienceDaily, 10 June 2019. <www.sciencedaily.com/releases/2019/06/190610151938.htm>.
University of New Mexico. (2019, June 10). Trailblazing findings on the properties of daguerreotypes. ScienceDaily. Retrieved June 24, 2019 from www.sciencedaily.com/releases/2019/06/190610151938.htm
University of New Mexico. "Trailblazing findings on the properties of daguerreotypes." ScienceDaily. www.sciencedaily.com/releases/2019/06/190610151938.htm (accessed June 24, 2019).

RELATED STORIES

FROM AROUND THE WEB

Below are relevant articles that may interest you. ScienceDaily shares links with scholarly publications in the TrendMD network and earns revenue from third-party advertisers, where indicated.
http://www.vxiaotou.com